Antiparallel Dynamic Covalent Chemistries

نویسندگان

  • Bartosz M Matysiak
  • Piotr Nowak
  • Ivica Cvrtila
  • Charalampos G Pappas
  • Bin Liu
  • Dávid Komáromy
  • Sijbren Otto
چکیده

The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels

Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties....

متن کامل

Dynamic urea bond for the design of reversible and self-healing polymers

Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (ure...

متن کامل

Strategies for covalent attachment of DNA to beads.

Several covalent attachment chemistries were tested for the immobilization of DNA onto glass beads. The comparison was based on the ability of these chemistries to produce derivatized beads that give good hybridization signals. Cyanuric chloride, isothiocyanate, nitrophenyl chloroformate, and hydrazone chemistries gave us the best (yet comparable) hybridization signals. We further characterized...

متن کامل

Insights into dynamic covalent chemistry for bioconjugation applications

Wang, S. 2017. Insights into dynamic covalent chemistry for bioconjugation applications. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1554. 59 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0065-8. Dynamic covalent chemistry (DCC) is currently exploited in several areas of biomedical applications such as in drug discovery, sen...

متن کامل

Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility.

Supramolecular self assembly techniques have provided a versatile means by which to selectively assemble polymer molecules into well-defined three dimensional core-shell nanostructures. The covalent stabilisation and tailoring of these dynamic nanostructures can be achieved using a range of chemistries within the assembly to afford robust functional nanoparticles. Many examples of the stabilisa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 139  شماره 

صفحات  -

تاریخ انتشار 2017